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Abstract. In recent years, process capability indices (PCIs) have been widely applied
in quality control by most practitioners to assess whether the production process reaches
a required level. However, the characteristic variable in many industrial production pro-
cesses has non-normal distribution. This paper uses the Clements’s method to estimate
four non-normal process capability indices for lognormal distribution. A simulation study
is done to analyze the influence of skewness and kurtosis on the precision of estimation
of process capability indices for the given distribution.
Keywords: Process capability index, Clements’s method, Lognormal distribution

1. Introduction. In recent years, process capability analysis has been widely applied
in the field of quality control to assess whether the production process is capable or not
to reach the required specification limits. The most extensively used PCIs in industrial
manufacturing are defined as follows:

Cp =
USL− LSL

6σ
, (1)

Cpu =
USL− µ

3σ
, (2)

Cpl =
µ− LSL

3σ
, (3)

Cpk = min (Cpu, Cpl) , (4)

where USL is the upper specification limit, LSL is the lower specification limit, µ is the
process mean, and σ is the process standard deviation. The process capability indices Cp

and Cpk are used in cases of bilateral specifications (target-the-better type); Cpu and Cpl

are used in cases of unilateral specifications (larger-the-better type and smaller-the-better
type quality characteristics). These four PCIs are generally defined based on three basic
assumptions.

1) The collected data is under control.
2) The data are independent and identically distributed.
3) The collected process data is normally distributed.

However, some quality characteristics are not normally distributed. For the non-normal
data, one way is to transform the data into normally distributed data using some math-
ematical functions. Johnson [5] utilized the moment method to build a system of distri-
butions. Box and Cox [1] proposed a well-known power transformation. Somerville and
Montgomery [9] used a square-root transformation to solve this problem. All these three
methods are based on the technique of data transformations. Another simple way to deal
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with non-normal data is to use the percentiles instead of means and variances to modify
classical PCIs Cp, Cpu, Cpl and Cpk for non-normal data. The percentile based PCIs are
defined as follows:

Cp(q) =
USL− LSL

x99.865 − x0.135

, (5)

Cpu(q) =
USL− x50

x99.865 − x50

, (6)

Cpl(q) =
x50 − LSL

x50 − x0.135

, (7)

Cpk(q) = min
(
Cpu(q), Cpl(q)

)
, (8)

where xp = p ∗ 100th percentile value of non-normal data.
Clements [3] proposed the method of using non-normal percentiles to calculate the esti-

mator of Cp and Cpk indices for non-normal Pearsonian distributions. Clements’s method
is to calculate the sample mean X̄, the standard deviation S, the sample kurtosis and
the sample skewness of the given data in advance. From Gruska et al. [4] and Kotz and
Lovelace [7], we can use the sample kurtosis and skewness to find the corresponding stan-
dardized tails Z0.135, Z0.5 and Z0.99865 of Pearson curves, where the skewness is ranging
from −2 to 2 and kurtosis is ranging from −1.4 to 12.2. Once the standardized percentiles
are obtained, the percentile value of non-normal data can be estimated as

x̂0.135 = X̄ + Z0.135S, x̂50 = X̄ + Z0.5S and x̂99.865 = X̄ + Z0.99865S.

Replace the percentiles x0.135, x50 and x99.865 in the percentile based PCIs Cp(q), Cpu(q),
Cpl(q) and Cpk(q) by the estimated percentile values x̂0.135, x̂50 and x̂99.865 of non-normal

data, then we can obtain the related estimator Ĉp(q), Ĉpu(q), Ĉpl(q) and Ĉpk(q).
In this study, we consider the lognormal distribution data and use Clements’s method to

estimate the percentile based PCIs. One can see Singh et al. [8] for the Bayesian estimation
and prediction for lognormal distribution. The structure of this research is organized as
follows. In Section 2, the derivation of the first four central moments, skewness and
kurtosis is developed. The steps to find the estimator of percentile based PCIs based
on Clements’s method are given in this section. In Section 3, a simulation study is
done to analyze the influence of skewness and kurtosis on the precision of estimation of
process capability indices for lognormal distribution and the analysis is given. At last,
the conclusion is discussed in Section 4.

2. The Lognormal Distribution. Let random variable X have a two-parameter log-
normal distribution with probability density function given by

fX(x) =
[
x
√
2πσ

]−1

exp

[
−1

2

(log x− ζ)2

σ2

]
, x > 0.

From Johnson et al. [6], we can obtain the rth moment of X as µ′
r = E [Xr] =

exp
(
rζ + 1

2
r2σ2

)
. From Wartmann [10], the rth central moment can be obtained as

µr = E [(X − µ′
1)

r]

=
r∑

j=0

(−1)j
(

r
j

)
µ′
r−jµ

′j
1

=
r∑

j=0

(−1)j
(

r
j

)
exp

{
(r − j)ζ +

1

2
(r − j)2σ2 + jζ +

1

2
jσ2

}
=

r∑
j=0

(−1)j
(

r
j

)
exp

[
rζ +

1

2

{
(r − j)2 + j

}
σ2

]
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Let ω = exp(σ2), then we have

µr = erζ
r∑

j=0

(−1)j
(

r
j

)
ω{(r−j)2+j}/2

= ωr/2

{
r∑

j=0

(−1)j
(

r
j

)
ω(r−j)(r−j−1)/2

}
erζ

(9)

Taking r = 3 and 4 in µr, we can obtain µ3 = ω3/2(ω − 1)2(ω + 2)e3ζ and µ4 =
ω2(ω − 1)2(ω4 + 2ω3 + 3ω2 − 3)e4ζ . From Burr [2], we can obtain the skewness

α3 =
√
β1 =

µ3

σ3
=

µ3

(µ2)3/2
=

ω3/2(ω − 1)2(ω + 2)e3ζ

{e2ζω(ω − 1)}3/2
= (ω − 1)1/2(ω + 2)

and kurtosis as

α4 = β2 =
µ4

σ4
=

µ4

(µ2)2
=

ω2(ω − 1)2(ω4 + 2ω3 + 3ω2 − 3)e4ζ

{e2ζω(ω − 1)}2
= ω4 + 2ω3 + 3ω2 − 3,

where α3 > 0 and α4 > 3.
Observe that both of skewness and kurtosis are independent of the location parameter

ζ and only dependent on the shape parameter σ.
We will use the kurtosis and skewness to find the corresponding standardized tails

Z0.135, Z0.5 and Z0.99865 of Pearson curves and then use sample mean and sample standard
deviation to find the estimated percentiles x̂0.135 = X̄ + Z0.135S, x̂50 = X̄ + Z0.5S and
x̂99.865 = X̄ + Z0.99865S for lognormal distribution. Replace the percentiles in the PCIs
Cp(q), Cpu(q), Cpl(q) and Cpk(q) by the estimated percentile values x̂0.135, x̂50 and x̂99.865 of

non-normal data, then we can obtain the corresponding estimators Ĉp(q), Ĉpu(q), Ĉpl(q) and

Ĉpk(q).

3. Simulation Study. The procedure of the process capability analysis using the log-
normal is presented as follows.

Step 1. Consider a specific distribution for example Lognormal(0, 0.1).
Step 2. Set up a target process capability index values (PCIs) for Cp(q), Cpu(q), Cpl(q),

Cpk(q) as 1, 1.5 and 2 with nonconforming rates of 1350 ppm (parts per million), 3.4 ppm
and 0.001 ppm.

Step 3. Find the related upper specification limit (USL) and lower specification limit
(LSL) as follows: USL = Cpu(q)(x99.865 − x50) + x50 and LSL = x50 − Cpl(q)(x50 − x0.135).

Step 4. Generate random sample of sizes n = 50, 100, 500 from the specific distribution
chosen in Step 1.

Step 5. Calculate the sample mean
(
X̄
)
, standard deviation (S), skewness (α̂3), and

kurtosis (α̂4) from the generated data.
Step 6. Use the sample kurtosis and skewness to find the corresponding standardized

tails Z0.135, Z0.5 and Z0.99865 of Pearson curves and the percentile value of non-normal
data can be estimated as

x̂0.135 = X̄ + Z0.135S, x̂50 = X̄ + Z0.5S and x̂99.865 = X̄ + Z0.99865S.

Step 7. Replace x0.135, x50 and x99.865 in (5)-(8) by x̂0.135, x̂50 and x̂99.865, then we can

obtain the estimators Ĉp(q), Ĉpu(q), Ĉpl(q) and Ĉpk(q).

Step 8. Repreat Steps 4-7 for 30 times and yield the mean and standard error of Ĉp(q),

Ĉpu(q), Ĉpl(q) and Ĉpk(q).
For lognormal distribution, we consider the following five cases with increasing skewness

and kurtosis for fixed ξ = 0.
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Lognormal distribution
ξ σ α3 α4

0 0.1 0.30 3.16
0 0.2 0.61 3.68
0 0.3 0.95 4.64
0 0.4 1.32 6.26
0 0.5 1.75 8.90

Table 1. The mean and SE of 30 estimated process capabilities for log-
normal distribution

Lognormal(0, 0.1) with skewness = 0.30 and kurtosis = 3.16
Cp(q) 1 Clements 1.5 Clements 2 Clements
mean n = 50 1.298505 n = 50 1.947758 n = 50 2.597011
SE 0.266165 0.399248 0.532331

mean n = 100 1.083829 n = 100 1.625744 n = 100 2.167659
SE 0.148619 0.222928 0.297238

mean n = 500 1.063759 n = 500 1.595638 n = 500 2.127517
SE 0.095725 0.143588 0.191450

Cpu(q) 1 Clements 1.5 Clements 2 Clements
mean n = 50 1.330011 n = 50 2.001350 n = 50 2.672690
SE 0.359901 0.548536 0.737702

mean n = 100 1.131592 n = 100 1.698306 n = 100 2.265020
SE 0.226299 0.337342 0.448739

mean n = 500 1.068982 n = 500 1.603543 n = 500 2.138103
SE 0.120981 0.183206 0.245728
Cpl(q) 1 Clements 1.5 Clements 2 Clements
mean n = 50 1.322537 n = 50 1.983555 n = 50 2.644574
SE 0.276673 0.429860 0.584164

mean n = 100 1.072723 n = 100 1.609632 n = 100 2.146541
SE 0.228885 0.348744 0.469202

mean n = 500 1.100470 n = 500 1.653267 n = 500 2.206063
SE 0.221691 0.341943 0.462372

Cpk(q) 1 Clements 1.5 Clements 2 Clements
mean n = 50 1.153978 n = 50 1.713188 n = 50 2.272399
SE 0.228893 0.337570 0.446759

mean n = 100 0.952399 n = 100 1.426042 n = 100 1.898931
SE 0.108580 0.165198 0.223398

mean n = 500 0.950331 n = 500 1.418651 n = 500 1.886971
SE 0.088941 0.133070 0.177440

Due to limited space, other tables for skewness = 0.61, 0.95, 1.32, 1.75 are available in
authors’ site.
From Table 1, we have the following findings.

1) When sample size increases, the estimated PCI is getting closer to the nominal one.
2) When sample size increases, the precision is getting better since the SE is getting small

under fixed preassigned PCI values.
3) When the target value of PCI increases, SE is getting larger so that we can conclude

that the performance of estimated PCI is getting worse.

For large sample n = 500, the box plots of 30 estimated PCIs are presented in Figure
1.
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(a) (b)

(c) (d)

Figure 1. (a) Box plot for 30 Ĉp(q) under Cp(q) = 2, (b) box plot for 30

Ĉpu(q) under Cpu(q) = 2, (c) box plot for 30 Ĉpl(q) under Cpl(q) = 2, (d) box

plot for 30 Ĉpk(q) under Cpk(q) = 2

From Figure 1, we have the following findings.

1) The accuracy is generally getting worse since the median is getting more deviated from
the target value 2 when the skewness or kurtosis increases.

2) The precision is generally getting worse since the dispersion is getting larger when the
skewness or kurtosis increases.

3) The estimation of Cpl(q) performs the worse compared with the other three PCIs.

4. Conclusions. This paper utilizes the Clements’s method to estimate four non-normal
process capability indices for lognormal distribution. A simulation study is done to an-
alyze the influence of skewness and kurtosis on the precision of estimation of process
capability indices for the given two distributions. Generally speaking, the Clements’s
method employed to estimate four PCIs is effective for lognormal distribution. In the
future, we can conduct the analysis on other distributions, for example, inverse Gaussian
distribution.
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